Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations

نویسندگان

  • Luca Bergamaschi
  • Massimiliano Ferronato
  • Giuseppe Gambolati
چکیده

The Finite Element (FE) integration of the coupled consolidation equations requires the solution of linear symmetric systems with an indefinite saddle point coefficient matrix. Because of ill-conditioning, the repeated solution in time of the FE equations may be a major computational issue requiring ad hoc preconditioning strategies to guarantee the efficient convergence of Krylov subspace methods. In the present paper a Mixed Constraint Preconditioner (MCP) is developed combining implicit and explicit approximations of the inverse of the structural sub-matrix, with the performance investigated in some representative examples. An upper bound of the eigenvalue distance from unity is theoretically provided in order to give practical indications on how to improve the preconditioner. The MCP is efficiently implemented into a Krylov subspace method with the performance obtained in 2D and 3D examples compared to that of Inexact Constraint Preconditioners and Least Square Logarithm scaled ILUT preconditioners. Two variants of MCP (T-MCP and D-MCP), developed with the aim at reducing the cost of the preconditioner application, are also tested. The results show that the MCP variants constitute a reliable and robust approach for the efficient solution of realistic coupled consolidation FE models, and especially so in severely ill-conditioned problems. 2008 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations

A major computational issue in the finite element (FE) integration of coupled consolidation equations is the repeated solution in time of the resulting discretized indefinite system. Because of ill-conditioning, the iterative solution, which is recommended in large size 3D settings, requires the computation of a suitable preconditioner to guarantee convergence. In this paper the coupled system ...

متن کامل

FSAI-based parallel Mixed Constraint Preconditioners for saddle point problems arising in geomechanics

In this paper we propose and describe a parallel implementation of a block preconditioner for the solution of saddle point linear systems arising from Finite Element (FE) discretization of 3D coupled consolidationproblems. TheMixedConstraint Preconditioner developed in [L. Bergamaschi,M. Ferronato, G. Gambolati,Mixed constraint preconditioners for the solution to FE coupled consolidation equati...

متن کامل

Performance and robustness of block constraint preconditioners in Finite Element coupled consolidation problems

Block constraint preconditioners are a most recent development for the iterative solution to large scale, often ill-conditioned, coupled consolidation problems. A major limitation to their practical use, however, is the somewhat difficult selection of a number of user-defined parameters (at least 4) in a more or less optimal way. The present paper investigates the robustness of three variant of...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008